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SUMMARY 

Various techniques for implementing normal and/or tangential boundary conditions in finite element 
codes are reviewed. The principle of global conservation of mass is used to define a unique direction for 
the outward pointing normal vector at any node on an irregular boundary of a domain containing an 
incompressible fluid. This information permits the consistent and unambiguous application of essential 
or natural boundary conditions (or any combination thereof) on the domain boundary regardless of 
boundary shape or orientation with respect to the co-ordinate directions in both two and three 
dimensions. Several numerical examples are presented which demonstrate the effectiveness of the 
recommended technique. 
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1. INTRODUCTION 

In the finite element analysis of structural and fluid dynamics problems it is often required to 
specify normal or tangential displacements or velocities along element boundaries which are 
not level surfaces of the co-ordinate system for the problem. Typically, this arises in 
structural problems when a sliding contact is imposed between a body and an inclined 
surface or plane, i.e. the normal displacement of all nodes along the surface are specified to 
be zero. Similarly, in fluid dynamics the necessity to impose specified normal or tangential 
velocities arises in many situations; for example, in most steady simulations which include 
free surfaces the boundary condition at the free surface is that u,, the normal velocity 
component, is zero.' 

Since a Cartesian co-ordinate system is employed in the typical FEM formulation, the 
degrees of freedom are the x and y components of velocity (or displacement) and the usual 
methods of treating a constrained degree of freedom are no longer applicable when we wish 
to specify the normal or tangential component of a variable at a boundary which is not 
parallel to the X or Y axis. Herein we will be concerned with the details of the implementa- 
tion of such boundary conditions, particularly in finite element codes for incompressible fluid 
flow. Such an implementation will to some extent be code dependent; however, the basic 
techniques to be discussed should be applicable in most cases. We will first review several of 
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the techniques used in some of the current finite element fluid mechanics literature, and then 
detail the implementation used in most structural FEM codes, and by a few workers in fluid 
mechanics (e.g. see Pinder and Gray, Reference 2, p. 281). The technique is quite general, 
and not subject to the restrictions or drawbacks that afflict the methods that have been used 
to date in many fluid mechanical applications. 

We shall also focus on the method of computing the normal and tangential directions at a 
node point on the boundary along which the normal or tangential boundary condition is to 
be applied and demonstrate that if the normal vector computation is not consistent with the 
incompressibility constraint, erroneous results, especially pressure, will be obtained owing to 
an inconsistent set of equations. 

2. IMPLEMENTATION 

We consider the problem of a boundary along which either the normal or tangential velocity 
component is specified while the remaining component is free, as depicted in Figure 1. Our 
aim will be to detail a general technique for implementing the boundary conditions (u, 
specified, u, free) or (u, free, u, specified), where the specified value may be zero or 
non-zero, which does not require treating the different sets of conditions in a separate 
manner; i.e. the implementation technique should be independent of whether u, or u, is 
being constrained. The method should also require minimum alterations to the existing FEM 
code, and preferably only at element level. 

Suppose initially we wish to impose u, = f  and u, free along the boundary, then the 
constraint equation for node i can be written 

n.u=n,u,+n,u, = f  (1) 

where (%, u,) are the x and y velocity components at node i and ($, n,) are the x and y 
components of the outward pointing unit normal vector at node i. 

Let M=O be the momentum equation for node i. One approach is to resolve the vector 
momentum equation into its x and y components, M, = 0 and My = 0, and then solve for u, 
and u, by discarding one of the momentum equations at node i ,  say the y equation, and 
replacing it by the constraint equation (1). This approach, adopted for example by Sillimar~,~ 
breaks down when the tangent at node i approaches the y axis (since the ‘wrong’ momentum 
equation has been discarded). 

Another procedure, which is free of the previous limitation, is to form the tangential 
momentum equation at node i, 

0 = M, = t - M = t,M, + tyMy, (2) 

n (ut specified, un free) 
Or (ut free, un specified) 

Figure 1. Boundary conditions 
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and to use this equation together with the constraint equation (1) to solve for u, and uy. This 
method is generally quite satisfactory, the main objection being that its implementation 
is not independent of the type of boundary condition being applied. If u, is constrained 
then the normal momentum equation must be formed instead of the tangential one and the 
tangential constraint equation used. More importantly, the implementation of this technique 
in a general FEM code is not straightforward, requiring a great deal of manipulation due to 
the necessity of discarding an existing equation and introducing a new one for a particular 
degree of freedom. This method has been used by Saito and Scriven' in free surface 
problems where the constraint u, = 0 was the only one required. 

An alternative approach is rather than working with u, and uy as the degrees of freedom 
for node i on the boundary, the local x-y co-ordinate system at node i is rotated to coincide 
with the tangential and normal directions so that u, and u, now become the degrees of 
freedom at node i. Noting that 

ut = t x u ,  + t y u y  

u, = %UX + nyuy, 

the conversion from (K, u,,) to (h,u,,) is achieved at element level by post-multiplying the 
total element stiffness matrix K (K includes contributions from both the momentum and 
continuity equations) of any element containing node i by the orthogonal rotation matrix R, 
i.e. R-I =RT, where the entries of R at j, k (the positions of the u, and uy degrees of 
freedom in the element stiffness matrix) are 

( 3) 

k [ I ,  ty  ] J 

% n , k  

The remaining diagonal entries of R are unity and all other elements are zero. The rotation 
matrix, which transforms u, and uy to u, and u,, is determined once n is known because 
t = kxn,  where k is the unit vector in the z direction, i.e. t, = -n, and t,, = n,. Note that this 
describes a transformation from a right-handed (x-y) co-ordinate system to a left-handed 
( t -n)  co-ordinate system; we chose this approach so that the positive tangent direction is 
anti-clockwise. It is of course possible (and perhaps even preferable) to define the tangent in 
the clockwise sense, via t = n x k = -k x n. 

This procedure has the great advantage that constrained values for u, or for u, can, once 
K is modified to KRT, be treated in exactly the same manner as constrained values for u, and 
u,, and without any additional code modifications. The method, however, suffers from the 
same limitation as the first one discussed. If the tangent at the surface approaches the X or Y 
axis, then depending on the component being specified, u, or u,, the method will break 
down. 

The natural modification to the above procedure which eliminates this potential problem 
is to transform the x and y momentum equations to the tangential and normal momentum 
equations before transforming u, and uy to u, and u,. This is the procedure adopted in most 
structural FEM codes4 and in some fluids applications. Noting that 

Mt = txM, + tyMy 

M, = n,M, + %My, 
we see that this is simply achieved by pre-multiplying the element stiffness of any element 
containing node i by the inverse (transpose) of the same orthogonal rotation matrix R used 
to transform ux, uy to h,u,,. 



228 M. S. ENGELMAN, R. L. SANI AND P. M. CRESHO 

So, in summary, to apply a constrained normal or tangential velocity at node i, we simply 
pre-multiply the element stiffness matrix and corresponding right-hand side vector by the 
appropriate matrix R and post-multiply the stiffness matrix by its transpose RT, and then 
apply the specified value in the same manner as a specified value for y, u, (i.e. the solution 
at this node will be in terms of the normal and tangential components of velocity). Once the 
system of equations has been solved, the u, and u, components of velocities at node i can be 
recovered using equation (3)--or its inverse (see equation (10)). 

This procedure satisfies all the criteria which we originally required. It has the additional 
advantage that because the normal and tangential equations are available at node i, the 
application of normal or tangential stress (or natural) boundary conditions at the boundary 
is now straightforward. 

3 .  COMPUTATION OF NORMAL DIRECTION 

Crucial to the successful implementation of any of the procedures in the previous section is 
the computation of the normal components n,,n, at a boundary node. Along a curved 
boundary which is approximated using isoparametric elements (see Figure 1), there is often a 
discontinuity in the slope of the approximated boundary and hence, the normal direction at 
such a node is not uniquely defined (such non-uniqueness can also occur on the exact 
boundary). An appropriate (and unique) normal direction may be determined, however, by 
invoking mass conservation arguments when dealing with an incompressible fluid. 

When using a standard Galerkin FEM procedure, the weak form of V * u = 0 is: 

lo i&V * u d R =  0 for all Gi, (4) 

where 4L is any basis function for the pressure and R is the entire computational domain. 
Since the space of pressure basis functions must always contain the constant function 
(hydrostatic pressure level), it follows from equation (4) that a global mass balance is always 
satisfied, i.e. 

Remark: For the common case in which the {I,$} are composed of Lagrange polynomials, 
equation ( 5 )  follows from equation (4) by direct summation of all the weak constraints since cj $j = 1. 

Inserting the approximate (FEM) solution, 

N 

u =  1 uiqi 
i - 1  

into equation (5) gives 

where N is the total number of velocity nodes (in R and on an) and qi is a basis function for 
velocity. We show next that the summation in equation (7) is, effectively, a boundary node 
constraint equation; i.e. all internal nodes cancel, as stated by Sani et al.’ To do this we 
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invoke Green's theorem in the following form 

where dl is an element of arc length on an. Thus, from equations (7) and (8), 

But qr = 0 on afi  for all internal nodes and therefore the sum over N is, effectively, collapsed 
to a sum over NB, the number of boundary nodes. 

The next step is to relate u, and u, to the normal and tangential velocities. Inverting 
equation ( 3 )  and using t = k x n  we obtain 

u, = %Url -nY4 (104 

uy = gun + nx4- (lob) 

In general, of course, n, and ny are functions of I ,  the location on af i  and may therefore be 
ambiguous at certain points. Now let un, be the normal component of velocity at the 
boundary node i, and similarly for 4,. Finally, we introduce nodal components of the unit 
normal at node i, %, and n,,; our goal is to determine these quantities uniquely (and mass 
consistently), even though the geometric normal may be undefined at node i. Thus we have 

u% = %un, - nY,% 

UY, = nY,% + n%%- 

(11a) 

(1lb) 

Inserting equation (1 1) into equation (7) yields, considering the results from equation (9), 

which involves only those nodes on af i  and can be rearranged to 

The mass consistent definition of the normal direction follows from equation (12) which, 
being a statement of global mass conservation, must be independent of the nodal tangential 
velocities. Hence, it must follow that 

which, when combined with the normalization requirement, n:i + n:; = 1, gives 

where 
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as the consistent normal direction at node i. Note that the domain integrals are replaced, in 
practice, by a,, the support of cpl,  and the integrations are performed in the standard way via 
isoparametric mapping. 

It is noteworthy that this result applies to any type of element, the only restriction being 
an incompressible medium. Also, this result is not new; it was previously derived in a less 
formal and simpler manner by Gray: based on the argument that a zero normal flow 
condition can only be satisfied in an averaged sense. Our derivation thus complements and 
substantiates that of Gray. 

Finally, inserting these results, equations (13) and (14), into equation (12) gives 
NE 3 = 0  or c n,(a,u, +ny,uy,)=0, (15) 

1=1 1 = 1  

which is the appropriate discretized analogue of the global mass balance equation, 

wandl = O ,  
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Although perhaps not obvious at first glance, the use of normal and tangential directions which 
are not consistent with the incompressibility condition (including, for example, the analytic 
normals for the boundary being modelled) can result in erroneous results. As demonstrated 
earlier, mass conservation arguments lead to the global mass balance 

l f i V - u d f 2 = [ n u * n d l = 0 .  

The right-hand side of this equation represents a constraint equation on the normal velocities 
(as determined by the consistently computed normals) along the boundary an, which is 
implicitly contained within the system of equations to be solved; in other words, it is possible 
to linearly combine the m discretized continuity equations so as to reproduce this constraint 
equation (see equation (15)). 

Consider a flow for which the normal velocities are properly specified everywhere on the 
boundary, (i.e. equation (15) is satisfied, see also Reference 5) e.g. any contained flow. If the 
normal velocities are imposed via the procedure detailed in the previous section, together 
with the consistently computed normals, the pressure will be (appropriately) determined only 
up to an additive arbitrary constant (of order one if Gaussian elimination is employed). This 
occurs because the imposed velocities now duplicate the implicit constraint equation and so 
we have a system of m - 1 linearly independent equations for m pressure unknowns. When 
the Gaussian elimination equation solver reaches the final pressure equation, it will en- 
counter an equation of the form 

r:p, = ri, 

where pm is the last pressure unknown and ry is an Q(1) random number multiplied by the 
round-off level of the computer. The solution of this equation results in pin - O(1) and a 
well-behaved back substitution process; the arbitrary hydrostatic pressure level has been set 
at r;lr: .  

On the other hand, suppose that the same normal velocities are imposed, but now using 
normals which are not consistent from the point of view of mass conservation, e.g. 
geometrically computed normals. We will now have, contained within the algebraic system of 
equations, a constraint equation of the form 

where E represents the mass imbalance due to the inconsistent normals. In this case, when 
the equation solver reaches the final pressure equation, it will encounter an equation of the 
form 

reprn = O(E).  

On our CDC computer, re - so that if E - 1 (or even lo-’), the pressure results may 
be completely meaningless due to overflow conditions which can occur during the back 
substitution solution phase for the remaining pressures. As pointed out in Reference 5, if 
E << 1, the velocities will be little-affected; a ‘large’ E ,  however, will also lead to an incorrect 
velocity solution and a very large constant pressure field. The algebraic system is ‘numeri- 
cally’ ill-posed if equation (15) is violated to an extent which is recognizable by the 
computer. 
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4. EXTENSION TO 3-D 

The procedures described in the previous sections can be extended to three dimensional 
problems in a straightforward manner. Instead of transforming the x and y momentum 
equations to the normal and tangential momentum equations, the x, y and z momentum 
equations will be transformed to a normal and two tangential momentum equations. 
Similarly the y, uy and u, velocity components are transformed to the corresponding 
tangential and normal velocities 4, and K, where tl, t2 are two linearly-independent 
tangent vectors and n the normal vector of the surface passing through the node in question. 

In practice, this is achieved by pre-multiplying by the matrix R and post-multiplying by 
RT, the total element stiffness matrix of any element containing node i, where R is the 
orthogonal rotation matrix with the following entries at j ,  k, 1 (the positions of the three 
boundary node degrees of freedom in the element stiffness matrix): 

1 k 1  

where t, = ( t : ,  t:, t:), t2 = ( t z ,  t;, t:). The remaining diagonal elements of R are unity and all 
other elements are zero. The right hand side vector is similarly pre-multiplied by R (at 
element level). 

It now remains to compute the normal and tangent vectors n, t,, t2. The arguments of the 
previous section carry over identically to three dimensions resulting in n = (4, ny, n,) where 
(suppressing the index for node i for convenience) 

and 

However, whereas in two dimensions for any given normal vector there exists a unique 
tangent vector, in three dimensions there exists only a unique tangent plane, with an infinite 
number of possibilities for the pair (t,, t,). We now outline a procedure for calculating such a 
pair given a normal n = (nx, ., n,) to the surface S at a node i :  
(a) First compute max {Inxi(, (nx jl, (nX kl} at the node point in question and choose that 

unit vector associated with the maximum value, say k, to form tl, a unit vector 
perpendicular to the plane determined by n and k, i.e. 

(b) Complete a right-handed triad of vectors using n and t,, i.e. 

nxnz %,-n* . 
t 2 = n x t , = ( F ,  n* 1 

The triad (t,, tz, n) defines the normal and two tangential directions at the node i on the 
surface S.  
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5 .  NUMERICAL, EXPERIMENTS 

The technique described in the previous sections was implemented in the FEM code 
FIDAP: which is a general purpose code for solving the two or three dimensional equations 
of fluid flow including the effect of heat transfer using a mixed or penalty type formulation. 

To illustrate the capabilities of the implementation, three numerical simulatons will be 
presented. The first is Hamel flow in which fluid flows between intersecting infinite plates- 
see Figure 3.  This flow is particularly well suited for our purposes since it has an analytic 
solution for comparison and, since only a finite length of wedge can be modelled, it requires 
the imposition of normal and tangential boundary conditions along curved boundaries. 

L----x 

Figure 3.  Hamel problem 

Table I. Hamel solution at r = 3 

Analytic Numerical 

Angle u, u, u, 4 

0 
3 
6 
9 

12 
15 
18 
21 
24 
27 

-4.6560 
-4.6282 
-4.6003 
-4.5724 
-45101 
-4.397 1 
-4.2075 
-3.8687 
-3.2388 
-2.0640 

0. 
0.2414 
0.4828 
0-7242 
0.9586 
1.1781 
1.3671 
1.4851 
1-4420 
1.0517 

-4.6146 
-4.6091 
-4.5860 
-4.541 3 
-4.4707 
-4.3359 
-4.1650 
-3.8258 
-3.2012 
-2.0375 

0. 
0-2355 
0.4799 
0.7209 
0.9561 

1-3654 
1.4810 
1.4312 
1.0409 

1'1.779 
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Table 11. Exact and computed normals for Hamel flow at 
outlet ( r  = 0.25) 

Computed Exact 
Angle nY ax n, n, 

0 
3 
6 
9 

12 
15 
18 
21 
24 
27 
30 

0.99998 
0.99867 
0.9945 1 
0.98761 
0.97816 
0.96589 
0.95121 
0.93352 
0.91389 
0.89042 
0.86968 

0.00704 
0.05156 
0.10461 
0.15690 
0-20778 
0-25895 
0.30854 
0.35852 
0.40596 
0.45514 
0.49362 

1. 
0.99863 
0.99452 
0.98769 
0-97815 
0.96593 
0.95106 
0.93358 
0.91355 
0.89101 
0,86603 

0. 
0.05234 
0.10453 
0.15643 
0.20791 
0-25882 
0.30902 
0.35837 
0.40674 
0.45399 
0.50000 

For our simulation the flow was taken to be inward (sink flow). The exact normal velocities 
were applied at the radius r = 4, and at the exit, r = 1/4, the condition u, = 0 was applied. The 
intersecting plates were set at a half angle of 30" with only half the wedge being modelled 
due to the symmetry of the problem. The element mesh used is shown in Figure 3 .  The 
Reynolds number was set to 61 and the analytic solution computed using a program 
provided by Gartling et al.' A nine-node biquadratic velocity-discontinuous linear pressure 
quadrilateral element with a penalty formulation was used for the simulation. 

Table I compares the analytic and numerical solutions at the radius r = 1, for 3" increments 
of 6. The error in the solution at any node is less than 1 per cent. In Table IT the exact and 

u/ = specified 

u = o  

un = 0 

Figure 4(a). Lid-driven wedge 
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(b) (C) 

Figure 4. (Continued) (b) Velocity vectors; (c) Streamlines 

computed normals for different values of 6 are compared at r = 1/4. Note that except for the 
corner nodes at 6 = 0" and 6 = 30", the computed normal is on average less than 0.5 per cent 
in error and that the corner nodes, which use the normal of the nearest Gauss point, are only 
-1 per cent in error. 

The second simulation, using the same element and method as the first, was of lid-driven 
flow in a wedge with a base angle of 10O-see Figure 4(a). The solution of the Stokes version 
of this flow is an infinite series of vortices decreasing in size and magnitude down the wedge. 
An accurate solution to this problem using streamfunction-vorticity variables and generated 
by a biorthogonal series technique, can be found in Sanders et aL9 Using this approximate 
solution we chose the streamline below the 5th eddy as the lower boundary of the region to 
be modelled. 

The exact analytic tangential driving velocities were applied along the lid ( r  = 1) and at the 
lower streamline boundary the condition u, = 0 was applied. The mesh used is shown in 



                                             

T
respectively. Since the maximum velocities in the 5 vortices were of the order 

respectively, each vortex was scaled and plotted separately and 
then superimposed on a single plot. The streamline values associated with the different 
vortices compare very favourably with those presented in Reference 9. The definition 
between the largest and smallest vortices is quite remarkable when the differences in velocity 
magnitude are considered and it is recalled that a penalty formulation was used. It may be 
that the successive vortices are largely ‘decoupled’ from each other even in the matrix, thus 
permitting good accuracy in each vortex separately. 

The final example we present is the Stokes flow resulting from a cylinder rotating with unit 
tangential velocity within a unit square cavity-u being zero everywhere on the boundary of 
the cavity. The radius of the cylinder was 0.15, and the centre of the cylinder was positioned 
at the point (0.7,0-6). A nine-node biquadratic velocity-continuous bilinear pressure ele- 
ment using a mixed formulation was employed for the simulation; the results are presented 
in Figures 5(a)-(d). Figures 5(a), (b), (c) are the computational mesh, velocity vectors and 

(a) Mesh 

vectors 
(d) 

.................. __-- ....... 

. . .  . .  ~\\\\..-- ---__, . . . . . . . . . . . . . .  ......... - . - 5 - - - - -  ............... ............................... ............................... ............................... 

(c) Pressure 

Figure 5 .  Flow driven by rotating cylinder 
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Table 111. Exact and computed normals for cylinder flow 

Computed Exact 
Angle nx n, n, n, 

0.00 
1 1.25 
22.50 
33.75 
45.00 
56.25 
67.50 
78.75 
90.00 

-1.0 
-0.9807858 
-0.9238720 
-0.83 14663 
-0.7071068 
-0.5555752 
-0.3827017 
-0.1950876 
-0.0 

-0.0 
-0.1950876 
-0.3827017 
-0.5555752 
-0.7071068 
-0,8314663 
-0.9238720 
-0.9807858 
-1.0 

-1.0 
-0.9807853 
-0.9238795 
-0.83 14696 
-0.7071068 
-0.5555702 
-0-3826834 
-0.1950903 
-0.0 

-0.0 
-0.1950903 
-0.3826834 
-0.5555702 
-0.7071068 
-0.8314696 
-0.9238795 
-0.9807853 
-1.0 

pressure contours respectively, for the flow; Figure 5(d) is a blow up of Figure 5(a) in order 
to display the eddy structure of the flow-those vectors within a certain radius of the cylinder 
have not been plotted. 

In order to verify the theoretical prediction of the effect of using inconsistent normals, this 
flow was recomputed using the exact u, and uy velocity components (exact to 14 decimal 
places) of the unit tangential velocity at the boundary nodes of the cylinder. This is 
equivalent to using a unit tangential velocity and the exact analytic normals rather than the 
consistent normals for the nodes on the cylinder; Table I11 presents the exact and computed 
consistent normals for these nodes on the boundary of one quadrant of the cylinder. The 
error is seen to be in the sixth or seventh decimal place in all cases, suggesting that the value 
of F in equation (17) will be of the order of The analysis of Section 3 thus predicts that 
the pressure solution will be of the order of &/re  - lo7. The computed pressures were in fact 
centred around 22,140 and acceptable (probably) here because the mass inconsistency, F ,  is 
very small. This reflects the (slight) non-satisfaction of the constraint equation associated 
with the hydrostatic pressure mode. A coarser mesh would cause much larger errors if any 
but the consistent normals were employed. 

6. CONCLUDING REMARKS 

The technique for implementing normal or tangential velocities in finite element codes for 
fluid flows which we have presented (or reviewed, for those who are already familiar with it) 
is quite general and, we believe, free of some of the inherent difficulties of other methods. Its 
implementation into existing FEM codes can be achieved in a relatively straightforward 
manner. 

Perhaps more importantly, we have described a method for generating normal and 
tangential directions in 2-D and 3-D which are consistent with the incompressibility 
constraint and demonstrated that the use of normal vectors computed by other means can 
result in erroneous solutions, especially in the pressure. 
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